Work Sheet- 5 for Class- Nine (16.08.2020), Chapter- Thirteen, Exercise- 13.1, Finite Series <u>Creative Questions:</u>

- 1. 3+6+9+12+... [All B.- 18]
 - a) Find the sum of first 20 terms of natural numbers.
 - b) If the sum of n terms of the series is630 then find the value of n.
 - c) Considering the first term of the series as first term and the common deference as common ration then construct a new series and find the sum of first 10 terms of the series.
- 2. Sixth and eleventh terms of an arithmetic series are 30 and 55 respectively [S.B.- 16]
 - a) Form two equations taking a as first term and d as common difference.
 - b) Find the series according to the stem.
 - c) If sum of n terms of the series is 6375 then find the value of n.

3. log 3 + log 9 + log 27 +.... [J.B.- 15]

- a) What kind of series is it?
- b) Find the 5th and 10th term of this series.
- c) Find the Sum of 1st 12 terms of this series.
- 4. The l^{th} term of an arithmetic series is l^2 and k^{th} term is k^2 .
 - a) Construct two equations according to the given information of the stem considering a as the first term of the series and d as common difference.
 - b) Find the $(l + k)^{\text{th}}$ term.
 - c) Prove that, summation of first (l + k)terms of the series is $\frac{l+k}{2}(l^2 + k^2 + l+k)$.

- 5. General terms of the three sequences are given below: $\frac{1}{n}$, $(-1)^{n+1} \frac{n}{n+1}$, $\frac{n-1}{n+1}$
 - a) Write down the 7th term of the second sequence.
 - b) Write down the second and the third sequences.
 - c) Find the sum of first three terms of the new sequence obtained by adding the general terms of first and second sequences.
- 6. $x + y + 2 + \dots$ is an arithmetic series whose common difference is $d, \frac{\sqrt{1+d} + \sqrt{1-d}}{\sqrt{1+d} - \sqrt{1-d}} = 2 + \sqrt{3}.$
 - a) From the arithmetic series form an equation in terms of x and y.
 - b) Using the given equation show that, $d = \frac{1}{2}$.
 -) Find the sum of first 100 terms of the arithmetic series.